Make your own free website on Tripod.com


     References


1. Gould, H. W., Equal products of generalized binomial coefficients, Fibonacci Quarterly 9 (1971), 337 - 346.

2. Hilton, Peter, and Jean Pedersen, Binomial coefficients in the Pascal Hexagon, Kolloquium Mathematik-Didaktik der Universität Bayreuth 14 (1988), 3 - 24.

3. Hilton, Peter, and Jean Pedersen, Extending the binomial coefficients to preserve symmetry and pattern, Computers Math. Applic. 17, No. 1 - 3 (1989), 89 - 102.

4. Hilton, Peter, Jean Pedersen and William Rosenthal, Pascalian triangles and extensions to hexagons, Quaestiones Mathematicae 13, Parts 3 and 4 (1990), 395 - 416.

5. Hilton, Peter, and Jean Pedersen, Two remarkable families of equilateral triangles within the Pascal Hexagon -- a triumph for symmetry, Symmetry: Art and Science (to appear).

6. Hoggatt, V. E., Jr, and G. L. Alexanderson, A property of multinomial coefficients, Fibonacci Quarterly 9 (1971), 351 - 356, 420.

7. Pólya, G., and G. L. Alexanderson, Gaussian binomial coefficients, Elemente der Mathematik, 26, No. 5 (1971), 102 - 108.


1Department of Mathematical Sciences
State University of New York, Binghampton
Binghamton, New York 13902-6000
U. S. A.

and

Department of Mathematics,
Statistics and Computing Science
The University of New England
Armidale, NSW 2351
Australia
2Department of Mathematics and Computer Science
Santa Clara University
Santa Clara, California 95053
U. S. A.

and

Department of Mathematics,
Statistics and Computing Science
The University of New England
Armidale, NSW 2351
Australia


VisMath HOME